Volume 12, Issue 2 (Vol. 12, No. 2, Summer 2018 2018)                   2018, 12(2): 315-344 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naeemifar O, Yasrobi S. Investigating the Effect of Sample Preparation Method and Plastic Fines Content on the Static and Cyclic Behavior of Clayey Sands. Journal of Engineering Geology 2018; 12 (2) :315-344
URL: http://jeg.khu.ac.ir/article-1-2797-en.html
Abstract:   (3585 Views)
of initial texture and plastic fine content has been investigated. In order to model the different deposition condition four different specimen preparation methods are used. The tests are conducted on sands and its combination with to 25 fine percent using static and cyclic method. Four different specimen preparation methods are used consisting of Dry Funnel Deposition (DFD), Water Sedimentation (WS), Moist Tamping (MT) and Air Pluviation (AP). Each method may be useful to model the behavior of some special deposited soils. For example, DFD is the best method to model the natural deposition of silty sands, while the WS method is suitable for simulating the sands natural deposition in the rivers. MT method is the best method to simulate the behavior of compacted embankments while SD method is suitable to prevent the segregation of particles with respect to other methods like Water Pluviation. Effect of sample preparation methods on the sands and silty sands behavior is investigated to some extent, while the clayey sands are rarely considered. The results show that water sedimentation method, Air pluviation method and Dry funnel deposition method tends to create dilative textures with continuous dilative behavior even in high clay fine content. In contrast, the wet tamping method shows the dilative behavior only for clean sands specimens and increasing fines will results in instability and complete strain softening behavior. In cyclic loading the difference between different methods are less with respect to static loading. It seems that the results of different methods tends to be identical with increasing in fine content. In general, increasing fine content up to 20 percent results in more instability. After that a threshold value can be estimated bout 2 percent, after that the instability becomes less with continuous increase in fines content. The valuable result is that the threshold value is not dependent on the specimen preparation method or initial texture of specimens. 
Full-Text [PDF 1189 kb]   (1101 Downloads)    
Type of Study: Original Research | Subject: Geotecnic
Received: 2018/07/8 | Accepted: 2018/07/8 | Published: 2018/07/8

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb