1 2228-6837 Kharazmi university 345 En. Geology Static earth pressure on inclined retaining walls with cohesive – frictional backfill 1 11 2010 4 1 773 792 05 10 2016 Distribution of static active earth pressure on an inclined retaining wall, with frictional or cohesive-frictional backfill, has been studied in the present research. Based on the limit equilibrium concept, and by implementing the horizontal slices method (HSM), two formulations have been proposed for determination of critical failure wedge. Results obtained from these formulas and results of the suggested equations by other researchers have been compared. Findings of current study show that horizontal slices method is capable of predicting the stress distribution and angle of failure wedge for inclined walls with high degree of accuracy. In addition, this method is applicable for various conditions of soil and wall and is able to consider the slope of backfill, friction between soil and wall, cohesion of soil and the effect of surcharge, simultaneously. Application of achieved formulation from horizontal slices method reveals that active earth pressure on inclined walls is nonlinear for both frictional and cohesive-frictional soils and the center of mass point of the resultant force would be located in an elevation less than one third of the height of wall.
344 En. Geology Using artificial neural networks as omplementary numerical methods for settlement prediction in Tabriz Metro Line 1 Tunnel c c دانشگاه آزاد اسلامی واحد تهران جنوب 1 11 2010 4 1 793 808 05 10 2016 One of the major problems in urban subway tunnels is tunnel stability analysis and determination of the safety factor, and the prediction of the settlement that caused to provide stability during the performance, and then at the time utilization structure. The objectives of this study is using different methods to predict and development of these methods by use of each other. In this  paper, analyze and evaluate the stability of Tabriz Metro tunnel- Line 1 has been carried out using numerical methods, artificial neural networks and empirical  equations. The two excavating methods used in Tabriz Metro tunnel- Line 1 (using machine TBM tunnel method and NATM). In the first part of this  research, the excavated zone of the tunnel with NATM method has been analyzed  using numerical method and surface settlement and amount of tunnel convergence in the tunnel walls have been predicted by this method. After that, surface settlement has been predicted using artificial neural networks and then it has  been compared with obtained value from numerical method analysis and empirical relations.  Then, based on these results, empirical relations of convergence - settlement have been modified for Tabriz Metro tunnel- Line 1. In the second part of the research, the TBM penetration rate was predicted by use of neural network which is an important parameter, when one faced with troublesome areas and is very useful to use appropriate pressure EPB for TBM.   347 Stability study of Gachsaran formation slopes in reservoir of Gotvand dam with effect of reservoir recharge and dissolution of salty materials B B kh m 1 11 2010 4 1 809 826 05 10 2016 Gotvand dam reservoir with over 90 km length is surrounded by Gachsaran, Mishan, Aghajari and Bakhtiari formations. The noticeable point in the dam reservoir is the presence of Gachsaran Formation that is composed of considerable volume of salt located  4 km upstream of dam. Salinity of dam water due to dissolution of salt in reservoir water can cause serious environmental problems. In addition to direct dissolution of salt in contact with reservoir water, slope instability can also influence on this process. Probable sliding in salty layers of slopes will insert a significant volume of salt in contact with reservoir water in a short time. In order to study the land-sliding process in reservoir area and also analysis of the effect of dissolution of salty layers on sliding, characteristics of dominant material engineering of mass constituent were defined by rock mechanics experiments. Then the results of performed tests on rock samples and GSI method were used to estimate the engineering parameters of rock mass. To investigate the land-sliding process in reservoir area and also the effect of dissolution of salty layers on sliding, some salt samples were transferred to the laboratory. Using circulation method, solubility of those samples were examined in different conditions. The results were generalized to the reservoir condition. Eventually, slope stability were analyzed by modeling with SLIDE software, considering different levels of reservoir water, influence of dissolution of salty layers. The obtained results indicate that slidings in reservoir area are mostly shallow and are caused by dissolution of salty layer. 346 En. Ecosystem Determination of volume change characteristics and effects of polymer and discrete short polypropylene fiber (PP-fiber) on saline clayey soils Ziaee Moaed Reza 1 11 2010 4 1 827 854 05 10 2016 Saline soils are of challengeable soils that may cause many problems in civil engineering projects. In this study, volume change behaviour of saline soils and also the effect of improvement and reinforcement on them have been investigated using laboratory tests as well as consolidation test, swelling pressure test and free swelling test. The case study is Amirkabir Highway which connects the cities Qom and Kashan.  Fifty four kilometer of this highway was deformed like waves due to existence of saline soils. The laboratory investigations showed that the studied soil has a considerable swelling potential which appears to be the main cause of damage to the highway pavement, therefore it is decided on improving the subsoil condition. The research program comprises of studying volume change behavior of saline soil, stabilized with lime and epoxy – resin polymer and reinforced with polypropylene fiber. Afterwards, results for two cases of stabilized and non-stabilized samples have been compared. According to the results, the main cause of swelling is soil disturbance and structure destruction of initial soil composition. Considering all of test conditions, it is appeared that, although lime is a traditional stabilization material but is economic for the most geotechnical projects and usage of polymer is suggested only in special applications due to its rapid setting 341 Likely Position of hidden caves in Kerman -Baghin plain, using hydrogeochemical criteria Abbasnejad Ahmad j j Shahid Bahonar University 1 11 2010 4 1 855 878 05 10 2016 The previous studies underteaken in the region indicate that the Ekhtiarabad and Chah-Darya sinkholes have occurred as a result of dissolution of underground gypsum rocks. Hence, they represent the likelyhood of hidden and threatening caves in the region. The presence of gypsiferous formations having surficial karstic features attest to this supposition. So, in order to determine the possible dissolving sites which may contain caves, the electrical conductivity and evaporite dissolution index maps of Kerman-Baghin aquifier were prepared and matched with groundwater recharge and mobility conditions. Accordingly, four suspected hidden- cave sites were recognized which include a large area around Ekhtiarabad village (as the most suspected site), one spot at the northwest of Baghin Plain and two other areas (south of Baghin and south and southwest or Kabutarkhan). Based on the utilized hydrogeochemical criteria, these last two areas may contain hidden caves, but, due to unsuitable hydrodynamic conditions, the possibility seems weak. 343 Analytical method for calculation of permanent deformation of earth slopes Ghanbari Ali k Sabermahani Mohsen l Afsharipur Yaser m k tmu l tehran University m tmu 1 11 2010 4 1 879 900 05 10 2016 A new approach is suggested to determine the permanent deformation of slope under seismic loading based on the horizontal slices method and limit equilibrium analysis. A comparison of the analytical results obtained from the proposed method for 3 sample slopes with those of previous research results is performed. The analytical method presented can be used to calculate yield acceleration, seismic coefficient of horizontal acceleration, permanent deformation and angle of failure wedge for slopes. Also, the stability analysis can be performed by proposed method. It was concluded that the horizontal slices method by analytical procedure proposed reliably calculates the permanent deformation of slopes. 342 Flood Forecasting in Sombar River by Time series Analysis using Box-Jenkins Model nakhaee mohamad n n tmu 1 11 2010 4 1 901 915 05 10 2016 Today, one of the most problems, for the purpose of flood management is river flow prediction. Prevention of economic body suffering arise of flood is one of the most important achievements of correct flow prediction. Factors and divers parameters influence the discharge, make complex the analysis. Conception-physical model, regression models and time series are the most common- analytical approach of river flow. In this search by using of discharge data of Ghareh Ghanlo station in 13 years ago, the prediction of Sombar river discharge by Box-Jenkins was done. To do so, MINITAB software was used. Also for selecting of the best prediction model used of error evaluation factor and ARIMA (1,1,0) (2,1,1)12 was selected as the best prediction model and finally by use of these methods river discharge for 24 next month, was forecasted.