Search published articles


Showing 2 results for 3d Numerical Analysis

Mehdi Derakhshandi, Mojtaba Honarmand, Amir Hossein Sadeghpour,
Volume 16, Issue 1 (5-2022)
Abstract

Earth dams are geotechnical structures constructed on various shapes of a valley. The Vanyar Dam is a rock-fill dam located on a narrow valley. Concerning the geometry of the canyon, three-dimensional modeling was utilized to analyze this dam. According to the numerical analysis, the maximum settlement is 88.14 cm, which corresponds to 48 m above the bedrock in cross-section C, that is, a little less than 1% of the dam height. Besides, the total vertical stresses recorded by the pressure cells are about 28% less than those obtained from the numerical analysis. It is assumed that the difference is caused by local arching due to lower compaction and consequently a low stiffness area around the pressure cells. In terms of pore water pressure, there is good agreement between the pore water pressure obtained from the numerical analysis and the piezometers, such that the results are restricted to less than 1%. In general, the difference between the numerical analysis results and those recorded by the instruments is acceptable. Furthermore, the dam shows a suitable level of performance at the end of construction.
Dr Ali Ghanbari, Fatemeh Mirdar,
Volume 18, Issue 4 (12-2024)
Abstract

Examining the seismic response of the ground surface and its impact on structures due to topographic effects and soil-structure interaction (TSSI) is highly significant. If the site has sloping topography, the importance of this study is further amplified, and the slope effect on soil-structure interaction must be considered. This research uses Loma Prieta (1989) earthquake records to analyze the seismic response of a 5-story concrete building located 5 meters from the crest of the slope for four angles: 15, 30, 45, and zero degrees (SSI), using 3D numerical analysis. Modeling was conducted with MIDAS GTS NX software for both TSSI and SSI systems. An elastic model and an HSS model were used for the building and soil, respectively. The seismic response of the building was evaluated by comparing maximum lateral displacements, base shear forces, inter-story drifts, and horizontal accelerations in TSSI and SSI analyses. As the slope angle increased from zero degrees (SSI) to 15, 30, and 45 degrees (TSSI), the average lateral displacement of the floors increased by 44%, and the average maximum horizontal acceleration increased by 21%. Additionally, with the slope angle increasing from zero degrees (SSI) to 15, 30, and 45 degrees (TSSI), the average ratios of inter-story drift and maximum base shear force increased by 14% and 21%, respectively.
 


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb