بررسی عدیدی رفتار دینامیکی مخلوط خاک-تراشه

لایه‌ای فرسوده

ممسود عامل سخی، فرزان زائری: گروه مهندسی عمران دانشگاه ارومیه
m.amelsakhi@urmia.ac.ir

تاریخ: دریافت 90/8/22
پذیرش 90/10/7

چکیده

حجم عظمت لایه‌ای فرسوده با توجه به تجربه نشان دهنده طبیعت باعث ایجاد مشکلاتی می‌شود. جهت حفظ شده است که رفع آن از دفع نسبی تراشی کلی، کشیدن این مشکلات در حالی سالها انجام می‌گیرد با استفاده از این مواد در صنایع مختلف بسیار نجات شده است. این مواد بدلیل جالاب احتمال پیوستن ترکیب طبیعی می‌باشند که به آنها نیز کمکی از شناخته شده‌ترین

میکرو‌ها محصول می‌شوند. با توجه به اینکه کاشت لرزش‌های رسیده ناشی از زلزله، به سازه‌ها مولتی‌رن روش‌های مقابله با تروج‌های زلزله است. لذا به نظر می‌رسد استفاده از مخلوط خاک-تراشه لایه‌ای‌های فرسوده در زیر بی‌روی می‌تواند بکری این نوعی میکرو‌ها عمل کرده و اثرات امواج حاصل را کاهش دهد. در این هدایت مصالح میکرو‌ها بعنوان میکرو‌ها در زیر بی‌روی می‌توانند مصالح موی کرده و فرسوده لایه‌ای که در زیر بی‌روی می‌تواند مصالح موی کرده و فرسوده لایه‌ای که در زیر بی‌روی می‌توانند

پایین، این برسی، در نظر گرفته شده است. نتایج نشان می‌دهد این مصالح دامنه‌های بهینه، شبیه و نورانی زلزله به سطح زمین را بخش‌نشان می‌دهد. همچنین با فراگیری علم سگ‌بنری در لایه‌ها می‌تواند در زلزله‌های شدید بیشتر به زلزله‌های ضعیف، عملکرد بهتری دارد. مزیت این روش نسبت به روش‌های مشابه هریه
مقدمه

ایران از نواحی برتر ارزشی دنیای اقتصاد است. بر این اساس، بافت روش‌های کاهش مخاطرات ناشی از زلزله، از وظایف محققان و جامعه مهندسی کشور است. از مهمترین اقدامات در این زمینه، کاهش نرخ‌های ورودی ناشی از زلزله به سازه‌ها است. عبارت‌دیگر، در میان دو کردن امواج زلزله قبل از ورود به سازه، می‌توان به ضریب سیبک‌سازی و اقتصادی تر بیان مقابله با این نشان از زلزله در ساختمان‌ها دست یابد. با توجه به آنچه که مطرح شد، این‌طور که باید از راه‌های اقتصادی است که امکان‌پذیر در کشورهای در حال توسعه از اهمیت بیشتری برخوردار است، زیرا، بصورت بودن طرح از نظر اقتصادی، علاوه بر کاربردی‌ترین دولتی، کاربردی‌ترین خصوصی را نیز مشتاق به استفاده از طرح‌های مصرف فنی ارزان قیمت خواهد کرد. بازیافت و استفاده مجدد از لاستیک‌های فرسوده پیکی از مشکلات زیست‌محیطی در دوران اخیر است. به عنوان مثال هر سال حدود ۵۰ میلیون تایر استفاده شده در ایالات متحده دور انداخته می‌شود [۱]. بر اساس آمارهای ارائه شده، که تنها به‌بخش کرجیکی از کل لاستیک‌های فرسوده است، و با توجه به اینکه رها کردن آنها در طبیعت باعث انتقال زیست‌محیطی می‌گردد، از این رو استفاده مجدد از این مصالح نظر محققان زیادی را به خود جلب کرده است. ارزیابی زیست‌محیطی مخلوط‌های سیم موجود در تایرهای مفلونه که ممکن است به‌اثر بر روزات مختلف بر روی کیفیت آب‌های زیرزمینی شود، از مواردی است که بررسی شده است. بر طبق این تحقیقات بر روی کیفیت آب زیرزمینی در طی دوره دو ساله تأثیر ضرر بسیاری مشاهده شده است [۲]. [۳]. [۴]. بررسی مخلوط‌های رس چسبیده‌خورد لاستیک نشان داده است به‌طور متوسط درصد لاستیک برای رسیدن به حداکثر حد روغن به تهیه کردن ۳۰٪/امست، همچنین با افزایش درصد لاستیک، تغییر پذیری مخلوط افزایش می‌یابد. علاوه بر این در صورت استفاده از خرده لاستیک ریز با افزایش درصد لاستیک درصد رطوبت بهبود یافته‌این‌ها لی بیش از خرده لاستیک درشست یاباید تغییر ناچیز است. این بررسی‌ها نشان داد افزودن ۴۰٪ خرده لاستیک باعث دست یافتن به بیش‌ترین چسبندگی و کم‌ترین زاویه اصطکاک داخلی در
دررسی عدیدی رفتار دینامیکی مخلوط خاک-تربیت لاستیک فرسوده

مخلوط می‌شود. هنگامی در صورت افزودن ۲۰٪ خرده لاستیک به خاک رس پیش‌تری مفاوت بررسی در آن حاصل می‌شود [۵]. از این‌جایی انجام گرفته برای تعیین رفتار دینامیکی خرده لاستیک به بالای لاستیک کاهش توسیع‌گری می‌باید. هنگامی رفتار لاستیک تا حدود ۵۰٪ تأثیر اندازی بر روی نسبت میزان مخلوط دارد و با رسیدن به ۷۵٪ نسبت میزان افزایش چشم‌گیری داشته و به حدود ۵۰٪ در کرنش‌های اندازه و حدود ۱۰٪ در کرنش‌های زیاد

می‌رسد. این بررسی‌ها نشان داد افزایش تنش نرم‌ال اعثافی افزایش چشم‌گیری در مدول برشی می‌شود و تأثیری بر روش میزان مخلوط ندارد. ساخت خاک‌پر زای دامن آمریکا در مقیاس واقعی با استفاده از مخلوط ماسه- خرده لاستیک و ثبت داده‌های ارزیابیده به‌عنوان

سال نشان داد حداکثر نشست خاک‌پر که پس از ۲۰۰ روز درب برای با ۱۲ میلی‌متر به‌دست

ودارد حکم‌کننده‌ای به حداکثر نشست حاکمیت ۲ میلی‌متر نیست سپس از آن تغییر شکل‌ها ثابت باقی ماند [۱]. مدل‌سازی عدیدی عمل کرد خاک لاستیک فرسوده به‌عنوان ایرلندیون ارزیابی در

زیربی نشان داد استفاده از این مصالح در خاک ماسه‌ای مترابط باعث کاهش چشم‌گیر در

شتاب‌های رسیده به ساختمان می‌شود. همچنین پایداری دینامیکی مخلوط در اثر تغییرات ایجاد

ارتقاف ساختمان بررسی شد. مقیاسی دامنه‌ای فوری برای خاک مسلح و غیرمسلح تحت شرایط

مذكور نشان داده است این دانش‌کاران خاک دامنه‌ای فوری در خاک مسلح و نیز شفافیت فکانسی در برخی

حالات‌ها است [۸].

بررسی‌های انجام گرفته بر پایه آزمون‌های آزمایشگاهی نشان می‌دهد که در صورت افزودن

خرده لاستیک به ماسه متوسط، میزان تغییر شکل گسیختگی مناسب با نشان قائم افزایش

می‌پایند [۹] و از سوی دیگر، با درصد لاستیک، کارشناسان و مدل‌سازی راهکار

می‌پایند که با افزایش تنش عمودی مؤثر وابسته به دارد [۱۰]. پژوهش‌ها نشان می‌دهد

که وسیع‌ترین مخلوط ماسه – لاستیک فرسوده خنک، به درصد ماسه وابسته زیادی

دارد و از درصد رطوبت از بین ۱۰۰٪ دارد. از سوی دیگر، این مصالح دارای اندرکش

بهتری با زنگ زده که محوره نسبت به دیگر انواع زنگ‌پذیره‌ها هستند [۱۱]. آزمون‌ها نشان
می‌دهد که در صورت استفاده از تابع‌های فرسوده به صورت شبکه‌ای از سلول‌های به هم پوشش، و بی‌کار بودن آنها در لایه‌های افکن در زیر بی‌نظیریت باربری خاک افزایش و میزان شکست کاهش می‌یابد [16]. آزمایش‌های گسترده‌ای انجام گرفته برفور این آزمایش‌ها مسلم که خود استرابیک باعث کاهش تغییر شکل دائم، محدود کردن سختی و مقاومت زیاد در برای تک خوردگی حرارتی می‌شود [13]. بررسی‌های انجام شده بر روی عمل کردن مخلوط ماسه-خاک استرابیک فرسوده نشان می‌دهد که در صورت استفاده از این مصالح به عنوان خاک رزی پشت دیوار حائل تحت بارهای لرزه‌ای، تغییر مکان دائم و فشار دینامیکی کاهش محوری می‌یابد [14]. بررسی‌های عدید نشان می‌دهد در صورت استفاده از مخلوط ماسه-خاک استرابیک به عنوان مصالح خاکریز در پشت دیوار حائل مسلم، با افزایش درصد استرابیک، تغییر مکان جانی دیوار حاصل و نیز نیروی وارد به مسلح کننده افزایش می‌یابد. این موضوع به دلیل تغییر کرنش حجمی از حالت انقباضی به حالت اتساقی با افزایش درصد استرابیک است [15]. آزمون‌ها بر روی خصوصیات مقاومت مخلوط خرده استرابیک - ماسه یکنوا بی‌خیال اختلاف یک درصد محدود رطوبت بهبود و استبناً اندکی به درصد استرابیک مورد یک می‌باشد هم‌چنین نتایج نشان‌دهنده کاهش مقاومت برشی مخلوط در صورت بی‌خیال است. در اینجا با استفاده از استرابیک درصد استرابیک مدول تغییر شکل و مقاومت کشنده مخلوط کاهش یافته و استبناً این به دا می‌باشد هم‌چنین هنوز در صورت افزودن خرده استرابیک به ماسه یکنوا، مخلوط با وجود تحمل نشان‌کننده کمتر کرنش‌های بیشتر را تحمل می‌کند [16]. این پروش‌های صورت گرفته بر روی خصوصیات خاک رس نشان داد در صورت اصلاح خاک، با افزودن 6/5 یا 6/7 یافته خرده استرابیک فرسوده به خاک رس، علاوه بر درصد استرابیک، اندازه یافته استرابیک نیز نقش مهمی در بهبود مقاومت فشاری محدود نشده مخلوط ایفا می‌کند. درصد استرابیک و اندازه یافته بهبود بهترین 6/5 و 6/7 میلی‌متر به‌دست آمده. هم‌چنین با افزودن 6/7 یافته استرابیک به خاک رس بیشترین مدول برشی و نسبت میزان در مخلوط مشاهده شد [17]. از سوی دیگر از استرابیک‌های فرسوده می‌توان به عنوان مصالح مسلحانه کشنده خاک استفاده کرد. نتایج بررسی‌های محققان
مشخصات و مدل رفتار مصالح

در جدول ۱ مشخصات مصالح استفاده شده در مدل‌سازی عدیدر ارائه شده است. در این مدل‌ها محیط خاک از جنس رس متوسط (مدول الاستیسیته در حدود 5MN/m^2) و در زیر پی مخلوطی مشکل‌آمیز است. درصد لاستیک فرسوده و خاک ماسه‌ای است. مشخصات مصالح مخلوط با توجه به آزمون‌هایی که نگذشته و سالی ۲۰۰۰ انجام داده‌اند (۱۸). تعبیه شد. به همراه وجود ۷۵٪ ترکیب لاستیک فرسوده است. است. عملکرد خاطی و نیز عدم احتمال استفاده از مصالح در برای بارگذاری‌های دینامیکی مدل رفتاری مخلوط خاک ماسه‌ای-لاستیک (RSM) با توجه به احتمال ورود خاک رس به محدوده خمیری تحت بارگذاری لزه‌ای، انتخاب شده است (ناتالي).

نهاپی بررسی ها عدم ورود خاک رس به محدوده پلاستیک را نشان می‌دهد.

جدول ۱. مشخصات مصالح در مدل‌های عدید

<table>
<thead>
<tr>
<th>نوع مصالح</th>
<th>وزن مخصوص (MN/m^2)</th>
<th>مقدار الاستیسیته (MN/m^2)</th>
<th>فشار برش (MN/m^2)</th>
<th>ضریب پویان (درجه)</th>
<th>سرعت موج برش (m/s)</th>
<th>زاویه اصطکاب داخلی</th>
<th>چسبندگی (kN/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مخلوط خاک-لاستیک (RSM)</td>
<td>۹۵۰۰</td>
<td>۱۴۵۰۰</td>
<td>۲۵۰۰</td>
<td>۸۸</td>
<td>۸۹</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>رس متوسط</td>
<td>۲۳</td>
<td>۱۹۱۹</td>
<td>۵۵۰</td>
<td>۳۵</td>
<td>۵۵</td>
<td>۱۰</td>
<td>۶۰</td>
</tr>
</tbody>
</table>

۱. Feng ۲. Sutter ۳. Rubber-Soil Mixture
فرآیند مدل‌سازی عددي

استفاده از روابط تحلیلی کلاسیک برای بررسی رفتار خاک به‌دلیل در نظر گرفتن کل خاک به‌عنوان توده‌ای ثابت، نتایج چندان دقیقی به‌دست نمی‌آید. لذا به‌نور مدل‌سازی توده‌ای خاک به‌دلیل گرفتن و استفاده از روش‌های عددي بر دقت محاسبات مفاهیمی آفزایش و نتایج

را به رفتار توده‌ای خاک نرمال نمی‌کند. به‌همین دلیل برای آزادانه محدود کردن تعداد انواع مدل‌سازی در این تحقیق مدل‌سازی Plaxis به‌عنوان مدلی در این تحقیق مناسب تر می‌باشد. از آنجا که

مقدار مطلق 3 گره‌ای توانایی تحلیل غیرخطی را ندارد. لذا در نرم‌افزار Plaxis از مدل‌های 6 و 15 گره‌ای برای تحلیل های غیرخطی استفاده می‌شود. در این مدل‌سازی به‌دست آمده

کردن تعادل اندازه برای رسیدن به جواب‌های دقیق تر از ارزیابی با ممایز بالاتر (15 گره‌ای)

استفاده شده است.

1. مدل هندسی و شرایط مرزی

برای مدل‌سازی هندسی ابتدایی استفاده شد که به‌طور طبیعی در پروسه‌های واقعی قابل

استفاده و استندارداشته. بر این اساس عمق سنجش (ارتفاع مدل) که پارامتر اصلی بررسی شده

در این تحقیق انتخاب ۱۰ و حداکثر ۲۵ متر و با گام‌های ۵ متری در نظر گرفته شد.

همچنین برای تعیین میزان تأثیر ضخامت پی بر عملی کردن مصالح از سه ضخامت مختلف

۶، ۱۰ و ۱۰۰ سانتی‌متر استفاده شده است. خاک محیط با توجه به جدول ۱ و توصیه محققان

[۲۱] راس متوسط انتخاب شد. مرزهای عمودی می‌تواند برای تحلیل‌های دینامیکی و در

موردی که بار دینامیکی از کف به مدل وارد می‌شود (بار زلزله)، وسیع‌ترین امواج به

داخل توده خاک شده و تأثیر منفی بر پاسخ‌های دینامیکی بدیل می‌شود. توجه به تحقیقات گذشته

مؤلفان [۲۰] در صورتی که در این مدل خاص، مرزهای مدل از هر طرف حدود ۲۰ متر

بزرگتر در نظر گرفته شود می‌توان انتظار داشت که اثرات منفی از بین برود (در صورت

استفاده همبستگی مرزهای جاذب). از این رو طول کل مدل ۱۵۰ متر و طول محدوده مسلع

۱۰ متر تعیین شد. استفاده از ضخامت‌های نیشتر از ۴ متر به‌دلیل حجم زیاد

خاک‌برداری و نیاز به مقدار بیشتر تراش‌های استیکی در عمل از نظر اقتصادی به‌صرفه

RSM شد. با ۲۰ متر تعیین شد. استفاده از ضخامت‌های نیشتر از ۴ متر به‌دلیل حجم زیاد

خاک‌برداری و نیاز به مقدار بیشتر تراش‌های استیکی در عمل از نظر اقتصادی به‌صرفه

Downloaded from jeg.khu.ac.ir at 11:23 IRDT on Sunday August 25th 2019
نیست، بنا بر این تحقیق یک ضخامت ثابت ۴ متر برابر محدوده مسلح در نظر گرفته شد. مدل دلاور گلکسهای قائم در مزرعه‌ها قائم و در مزرعه‌های افقی (کف مدل) دارای تکیه‌گاه‌های مفصل است و نیروی زاره در جهت افقی به کف مدل وارد شده است. تصویر یکی از مدل‌های ساخته شده برای انجام تحلیل‌های عدیدی در نرم‌افزار (Plaxis) در شکل ۱ ارائه شده است.

شکل ۱. تصویر یکی از مدل‌های ساخته شده در نرم‌افزار Plaxis

۲. میرایی مصالح

پارامتر متدال بیان میرایی، نسبت میرایی (FEM) است د. در روش الگوریتم محدود (FEM) میرایی را به‌کار می‌بریم. این ترتیب میرایی با یک ترکیب جرم و سختی سپس معمولاً می‌کنیم. پارامتری است که اثر جرم و سختی اثر ساختگی را در میرایی سیستم تغییر می‌کند. با افزایش β فرکانس‌های چک و با افزایش α فرکانس‌های بالا به بیشتر می‌شوند. در این تحقیق یکی از عناصر میرایی مصالح از روابط میرایی را به مبانی این رابطه استفاده شد:

\[a + \beta \omega^2 = 2\alpha \omega \xi \] (1)

پارامترهای α و β پارامترهای را در میرایی مصالح مدل‌سازی می‌شوند با مود ارتقاء و ω فرکانس ارتقا مود مورد نظر مصالح است. که از این رابطه قابل محاسبه است.

\[\omega = \frac{\omega_0}{\sqrt{n^2 + \omega_0^2}}, \quad n = 0, 1, 2, \ldots, \infty \] (2)

که در آن \(\omega_0 \) سرعت موج پرتویی، \(H \) ضخامت لایه و \(n \) شماره‌ی مود مذکور است.
رابطة ۱ دارای دو مجهول \(\alpha \) و \(\beta \) است و با استفاده از دو فرکانس ارتعاشی \(\omega \) که بیش از ۹۰٪ جرم مذکور موادی در آن شرکت دارد، مقدار مجهول تعیین می‌شود. به این منظور بر روی

سیستم نشان داده شده در صفحه ۱ با استفاده از نرم‌افزار ANSYS، مدل‌سازی مکانیک انرژی و مودهای اول و سوم با توجه به جرم‌های مذکور بالای آنها برای تعیین پارامترهای مجهول \(\alpha \) و \(\beta \) استفاده شدند. مقدار به‌دست آمده در تحلیل‌های دینامیکی استفاده شدند.

۳. المان‌بندی

برای پاسخ این پرسیده محاسبات با توجه به مطالعه ذکر شده در بخش قبل، افزایش تعداد

المان‌ها و نیز با توجه به محدودیت های مفید است. برای انجام تحلیل‌های دینامیکی در مسائل

زننگ‌هایی به‌وسیله الگوهای محدود، اندازه اجراگیری بعد قائم الگوهای برای رسیدن به دقیقه قابل

قبول از این رابطه محاسبه می‌شود.

\[
\frac{h_{\text{max}}}{h_{\text{max}}} = \frac{1}{N} \frac{V_2}{f_{\text{max}}}
\]

در رابطه مذکور \(f_{\text{max}} \) سرعت موج برخی در مصالح و \(N \) نایبی است که مطالب توصیه برخی محققان در بذره ۸ تا ۱۰ است [۲۲]. در این تحقیق برای

رسیدن به‌دقت بیشتر از مقدار بذره ۱۰ استفاده شد. مشخصات فرکانسی رکورد‌های زلزله و

المان‌بندی در جدول ۲ آورده شده است. در روند المان‌بندی این تحقیق توصیه مذکور مطرح

شده است.

۴. رکورد‌های زلزله

برای بررسی عملکرد مصالح مسلح کننده (RSM) در پاسخ این پرسیده تحلیل‌های انگشته از دو شتاب‌گونگی ضعیف و قوی استفاده شد که مشخصات فیزیکی شده

شتاب‌گونگی‌ها در بذره ۱۰ هرتز در جدول ۲ آمده است. در شکل ۲ رابطه زننگ

عملکرد توده قوی و ضعیف و نیز در شکل ۳ طیف فوریه شتاب‌گونگی‌های ذکر شده

ارائه شده است.
Table 2. Characteristics of earthquake waves and their transmission.

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Year</th>
<th>PGA (m/s²)</th>
<th>Tp (s)</th>
<th>Vp (m/s)</th>
<th>fmax (m)</th>
<th>Vs (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>1999</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td>2002</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram a: Acceleration spectrum intensity (ASI) and peak ground acceleration (PGA). Diagram b: Effective design acceleration (EDA) and Fourier amplitude (FA).

Discussion:

For a detailed analysis, 3 points were considered in the context of the problem. Point A represents the peak ground acceleration. Point B represents the effective design acceleration. Point C represents the acceleration spectrum intensity. The third point, Fourier amplitude (FA), is also shown. It is observed that the acceleration spectrum intensity (ASI) increases with increasing ground acceleration (PGA). The effective design acceleration (EDA) is lower than the peak ground acceleration (PGA). The Fourier amplitude (FA) is also lower than the effective design acceleration (EDA).
و ضخامت پی. فاکتورهای تصمیم‌گیری در تحلیل نتایج به دست آمده است.

شکل ۴. مناطق واقع در مدل برای پرسی نتایج تحلیل‌ها

۱. شتاب حداکثر زمین

اولین معیار و فاکتور در نظر گرفته شده برای تحلیل و مقایسه نتایج تحلیل، شتاب حداکثر زمین است. مقایسه نتایج اثر تغییرات عمق سنگ‌بستر بر شتاب حداکثر رسیده به سطح زمین به‌خوبی شتاب حداکثر رسیده RSM مسلج و غیرمسلج (نقاط C و B) نشان می‌دهد مصالح مسلج به سطح زمین را می‌را می‌کند. شتاب‌های رسیده به سطح زمین برای حاک مسلج و غیرمسلج در صورت اعمال شتاب‌گاشت قوی و ضعیف برای بالاترین عملکرد مصالح RSM در شکل ۵ نشان داده شده است. با توجه به شکل ۵ می‌توان مشاهده کرد که به‌دلیل حرکت موج از محیط سخت (سنگ بستر) به محیط نرم (خاک رس) شتاب حداکثر تشدید شده و پس از وارد شدن به محیط نرم شدت (محیط RSM وارد کاره کاهش یافته است که این مسئله مطباق با اصول دینامیک خاک و می‌توان انتشار امواج این خلاصه نتایج مربوط به PGA رسیده به سطح زمین در شکل ۶ به‌صورت نمودار آرائه شده است. بررسی نتایج نشان می‌دهد مصالح PGA در زلزله‌های شدید حداکثر ۴۳ و حداکثر ۴۴% و در زلزله‌های ضعیف حداکثر ۱۳% و حداکثر ۴۴% شتاب‌های رسیده به سطح زمین را می‌کند. لذا به نظر می‌رسد این مصالح در برابر زلزله‌های شدید عملکرد بی‌بهنگی را از خود نشان می‌دهند. همچنین با توجه به شکل ۶ تقریباً می‌توان بیان داشت در بین عمق سنگ‌بسترها در نظر گرفته شده، بهترین عملکرد در عمق سنگ‌بستر با ۱۰ متر حاصل شده است. بر اساس نتایج به‌دست آمده در شتاب‌گاشت ورودی ضعیف، تعیین عمقی از سنگ‌بستر که نشان می‌دهد بهترین وضعیت می‌آید مصالح
را داشته باشید به سادگی می‌نیست (عمق‌های 10، 20 و 35 متر) و لی‌ در شتاب‌گناشت قوی، عمیق که بیشترین تأثیر را نشان داده است مرتبه به سنگ‌بستر در عمق 10 متر است.

شکل 5. تاریخچه زمانی شتاب رضیده بر سطح زمین برای عمق سنگ‌بستر برای 1 امتار در اثر شتاب‌گناشت قوی (a) و ضعیف (b).

شکل 6. در سطح زمین برای شتاب‌گناشت قوی (a) و ضعیف (b) PGA در 10 هرتز برای سطح زمین مسلح و غیرمسلح برای فرکانس‌های پیش‌تر از 10 هرتز بعد از اورر EDA رسیده به سطح زمین مسلح و غیرمسلح برای اعمال مختلف سنگ‌بستر در شکل 7 یک دیگر مقایسه شده است. با توجه به شکل 7 می‌توان دریافت مصالح RSM توانایی زیادی در موارد نمونه امواج رسیده به سطح زمین در صورت میان قرار

2. شتاب مؤثر طراحی (EDA)

در این مرحله از شتاب مؤثر به عنوان می‌باشد برای مقایسه نتایج استفاده شده است. با توجه به اینکه فرکانس طبیعی ارتعاشات سنگ‌های مهندسی کمتر از 10 هرتز است، لذا امواج EDA با فرکانس پیش‌تر از این مقدار تأثیر چندانی بر سازه‌ها ندارد. از این رو می‌توان را EDA این شتاب‌گناشت نسبت به سطح زمین مسلح و غیرمسلح برای فرکانس‌های پیش‌تر از 10 هرتز بعد از اورر EDA رسیده به سطح زمین مسلح و غیرمسلح برای اعمال مختلف سنگ‌بستر در شکل 7 یک دیگر مقایسه شده است. با توجه به شکل 7 می‌توان دریافت مصالح RSM توانایی زیادی در موارد نمونه امواج رسیده به سطح زمین در صورت میان قرار
دادن EDA را داد. نتایج نشان می‌دهد با استفاده از مصالح مورد نظر، شتاب‌گناشت قوی حداقل 60% و حداقل 36% و شتاب‌گناشت ضعیف حداقل 42% و حداقل 24% می‌گردد.

![EDA](https://via.placeholder.com/150)

شکل 7: داده‌های شتاب‌گناشت قوی (a) و ضعیف (b) در سطح زیرین برای شتاب‌گناشت EDA

3. شدت شتاب طیفی (ASI)

معیار دیگر تحلیل و مقایسه نتایج این تحقیق شدت شتاب طیفی است. برای بررسی دقیق انتشار امواج در خاک و تعیین پایین دهنده ساختارهای متفاوت ساخته شده در یک منطقه، فارغ از مشخصات ساختارهای (میستم باربر جابجایی، ارتفاع و ...) داسنده می‌تواند با اعداد شتاب‌گناشت در یک منطقه این اثر وقوع زلزله را مناسب کند. منطقه در اثر وقوع زلزله می‌تواند کمک باید میزان ارتفاع خرابی فرکانس طبیعی ارتفاعهای ساختانهای متوالی در بازه 10 تا 100 هر ثانیه است. نشان می‌دهد مناسب زیر منحنی پایین شتاب در این بازه را به عنوان پایانی ایجاد خرابی و یا به‌طور دقیق‌تر، شدت شتاب طیفی نام‌گذاری کرد که این رابطه محاسبه می‌شود:

$$ASI = \int_{10}^{f} S_a (f, 0.05, f) df$$

که در آن S_a شتاب طیفی و f فرکانس منظور از شتاب طیفی است.

در این تحقیق برای برآورد میزان عملکرد مصالح RSM شدت شتاب طیفی (ASI) در این تحقیق برای برآورد میزان عملکرد مصالح بررسی و نتایج در شکل 8 ارائه شد. با توجه به شکل 8 می‌توان مشاهده کرد استفاده از این مصالح، شدت شتاب طیفی را به‌مقدار چشم‌گیری کاهش می‌دهد. نتیجه بسیار مثبت نشان دهنده مناسب بودن این مصالح برای استفاده در زیر پیش بیشتر ساختارهای متوالی است.

با توجه به اهمیت شدت شتاب طیفی در تصمیم‌گیری مبنای شکست، برای بررسی دقیق‌تر عملکرد این جداساز لرزه‌ای (RSM) در برابر تغییرات عمق سگنپستر،
مولفان پارامتری را با نام "نسبت کاهش شدت" (RIR) معروف کردنده که طبق رابطه زیر محاسبه می‌شود را از آن برای مقایسه نتایج استفاده کردن. نتایج این بررسی در شکل ۹ ارائه شده است.

\[
RIR = \frac{ASI(B) - ASI(C)}{ASI(B)}
\]

که در آن (ASI(B) و ASI(C) به ترتیب شدت شتاب طنینی در سطح زمین غیرملح و محل است.

با توجه به شکل ۹ مشاهده می‌شود این مصالح در عمق سه کیلومتر ۱۰ متر بهترین عملکرد را داشته و موجب بیشترین کاهش در شدت شتاب طنینی شده و لی در اعماق دیگر سنگ‌برستر عملکرد آن به شدت کاهش می‌یابد.

![نمودار 1](image1.png)

شکل ۹ نسبت کاهش شدت (RIR) برای شتاب نگاشت قوی و ضعیف

۴. حوزه فرکانس

در تحلیل سازه‌ها، برای بررسی دینامیکی، مسئله تشکیل یکی از مهم‌ترین و حساس‌ترین مباحث است. تبدیل سریع فوریه (FFT) قادر است رکورد زلزله را از حوزه زمان به حوزه فرکانس تبدیل کند.

۱. Reduction Intensity of Ratio ۲. Fast Fourier Transform
فرکانس تبدیل کرده و فرکانسی که در آن تشخیص رخ می‌دهد و همچنین دامنه تشخیص را مشخص کند. تبدیل سری فوریه با استفاده از این روابط انجام می‌شود.

\[
F(\omega) = \mathcal{F}(\omega) = 2 \sum_{n=-\infty}^{\infty} a_n \delta(\omega - n \omega_0)
\]

\[
\mathcal{F}(\omega) = \int_{0}^{T} u(t) \sin(\omega t) dt
\]

\[
S(\omega) = \int_{0}^{T} x(t) \sin(\omega t) dt
\]

که در آن \(T \) دوره تناوب، \(\omega_0 \) فرکانس زاویه‌ای و \(a_n \) سری زمانی مربوط به شتاب زمین است. از آنجا که \(F(\omega) \) یک تابع با مقدار مختلط است لذا می‌توان آن را با استفاده از رابطه زیر به طرف دامنه فوریه (FAS) حساب دهیم.

\[
\text{FAS} = \sqrt{\mathcal{F}^2(\omega) + \mathcal{S}^2(\omega)}
\]

با توجه به مطالب ذکر شده، در این تحقیق برای بررسی عملکرد سیستم جداساز لرزه‌ای پیشنهادی (RSM) در حوزه فرکانس از FFT برای بررسی پایداری تشخیص استفاده شده است. برای مقایسه بهتر نتایج، نمودار دامنه فوریه-فرکانس برای شتاب‌گاشت‌های قوی و ضعیف مربوط به پایین‌ترین با بالاترین عملکرد این مصالح در شکل‌های 10 و 11 نشان داده شده است. خلاصه مقایسه نتایج مربوط به فرکانس و دامنه تشخیص برای خاک مسلح و غیرصلح برای شتاب‌گاشت‌های ضعیف و قوی در جدول 3 آمده است.

شرکت زمین‌شناسی مهندسی، جلد چهارم، شماره 2 فاسیکس و زمستان 1389

شکل 10: نمودار دامنه فوریه برای پایین‌ترین عملکرد (ب) و ضعیف (ا) شتاب‌گاشت‌های قوی (RSM) در عمق 100 (آمریکا اسپانیول) در اثر

1. Fourier Amplitude Spectrum
شکل 11. طیف دامنه فوریه برای بالا و پایین عمک کرده RSM (در عمک 10 متری سنگ‌پنبه‌ای) در دو شناختگونه (a) و ضعیف (b).

جدول 3. فراکانس تشدید و دامنه فوریه در زمان تشدید عمک سنگ‌پنبه (متر)

<table>
<thead>
<tr>
<th>فراکانس (هرتز)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقایسه نتایج نشان می‌دهد با افزایش عمق سنگ‌پنبه از پرکاری دامنه فوریه در هر دو خاق محل و غیرمحل کاملاً مشابه ولی در تمام اعماق دامنه فوریه مربوط به خاق محل بیشتر می‌باشد. میران و نرخ نرخ کمتر است. در نتیجه می‌توان در سبک‌های دیگر قرارگیری مصالح RSM در زیر پی ساختن‌هایی، حتی اگر در زمان زلزله پیدا شد تشدید نیز رخ دهی این مصالح میران و تشدید را کاهش می‌دهد. همچنین با توجه به شکل‌های 10 و جدول 3 مشخص می‌شود در اثر شتاب‌گذاری قوی وجود این مصالح باعث شیفت فراکانسی
5. ضخامت پی

برای بررسی میزان تأثیر ضخامت پی بر عملکرد مصالح RSM سه ضخامت متفاوت، ۶۰، ۱۰۰ و ۱۴۰ سانتی‌متر برای پی منفی قرار گرفت. در اینجا با توجه به سختی کم پهای معمول در پی تغییرات توده خاک بررسی شده و مولفان معتقدند که ضخامت پی بر پایه‌های رسیده به سطح زمین مسلح تأثیر اندکی دارد و با این وجود برای صحت سنجی این ایسه در بکی نهایت ۲۵ متری (با عمق سنگ‌پیست برای ۳۰ متر و تحت اثر محرک ورودی) سه ضخامت برای شده پی بررسی شد که نتایج بدست آمده در شکل ۱۲ آرا اندازه‌گیری است. با مقایسه نتایج آرائه شده در شکل ۱۲ می‌توان دریافت که تغییرات ضخامت پی در محورهای معمول اجرایی تأثیر ناچیزی بر عملکرد مصالح RSM دارد که این نشان دهنده درستی این ایسه اولیه و قابل تعیین بودن نتایج آرائه شده با ضخامت ۱۰۰ سانتی‌متر به سایر ضخامت‌های معمول و با تقریب اندازکاری است.

شکل ۱۲: اثر تغییر ضخامت پی بر دامنه فوریه در عمق سنگ‌پیست برای ۲۵ متر تحت محرک ورودی قوی
نتیجه‌گیری

1. استفاده از مصالح رسم باعث کاهش شتاب حداکثر رسیده به سطح زمین می‌شود.

2. مصالح رسم در زلزله‌های شدید عمل کرده به‌طور نسبی به زلزله‌های ضعیف دارد.

3. با افزایش عمق سنجش‌ساز تأثیر مصالح رسم در کاهش لرزش‌های رسیده به سطح زمین کمتر می‌شود.

4. مصالح رسم شتاب موثر طراحی را به‌دست می‌دهد که این کاهش برای زلزله قوی در باره‌ی ۳۳٪/۶۰٪ و برای زلزله ضعیف در باره‌ی ۲۴٪/۴۵٪ است.

5. استفاده از مصالح رسم باعث کاهش شتاب طبیعی شده و در واقع توانایی ایجاد خرابی در ساختمان مورد نظر را کاهش می‌دهد.

6. با قرارگیری سنجش‌ساز در عمق ۱۰ متری بیشترین کاهش در شتاب طبیعی مشاهده شد و این در دبیر اعماق از این روند کاهش در شتاب طبیعی کاسته می‌شود.

7. با افزایش عمق سنجش‌ساز از برگزاری دانش‌های فوری برای هر دو خاک مسلل و غیرمسلخ کاسته شده و این کاهش برای خاک مسلل بیشتر از خاک غیرمسلخ است.

منابع

3. Humphrey, D. N., Katz, L. E., "Water Quality Effects if Using Tire Shreds Below the Ground Water Table", Final Report, Department of
Civil and Environmental Engineering, University of Main, Orono, ME, (2002).

