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Abstract 

The rock uniaxial compressive strength (UCS) and modulus of elasticity (Es) are two key 

design parameters in geotechnical engineering and rock mechanics. This study tries to 

accurately predict the desirable parameters using physical characteristics and ultrasonic tests. 

To do so, two methods, i.e. principal components regression and support vector regression, 

were employed. The parameters used in modelling included density, P- wave velocity, 

dynamic Poisson’s ratio and porosity. Accordingly, the experimental results conducted on 

115 limestone rock samples, including uniaxial compressive and ultrasonic tests, were used 

and the desired parameters in the modelling were extracted using the laboratory results. By 

means of coefficient of determination (R2), normalized mean square error (NMSE) and Mean 

absolute error (MAE), the developed models were validated and their accuracy were 

evaluated. The obtained results showed that both methods could estimate the target 

parameters with high accuracy. In UCS modeling, the values of R2, NMSE, and MAE 

obtained from the PCR method for the training set were 0.78, 22.45, and 0.363, respectively. 

Also, the values of R2, MSE, and MAE obtained for the testing set were 0.76, 22.51, and 

0.357, respectively. In Es modeling, the values of R2, MSE, and MAE obtained from the PCR 

method for the training set were 0.71, 34.23, and 0.421, respectively. Also, the values of R2, 

NMSE, and MAE obtained for the testing set were 0.7, 34.23, and 0.43, respectively. In 

support vector regression, Particle Swarm Optimization method was used for determining 

optimal values of box constraint mode and epsilon mode, and the modelling was conducted 
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using four kernel functions, including linear, quadratic, cubic and Gaussian. Here, the 

quadratic kernel function yielded the best result for UCS and cubic kernel function yielded 

the best result for Es. The values of R2, NMSE, and MAE were 0.83, 16.98, and 0.329, 

respectively, for the training dataset using the quadratic function in modeling UCS with the 

SVR method. Also, the values of MSE, R2, and MAE obtained for the testing set were 0.76, 

22.15, and 0.296, respectively. In Es modeling, the values of R2, MSE, and MAE were 0.73, 

29.11, and 0.45 for the training set, respectively. Also, the values obtained for R2, MSE, and 

MAE were 0.7, 25.67, and 0.272, for the testing set, respectively. In addition, comparing the 

results of the principal components regression and the support vector regression indicated 

that the latter outperformed the former. 

Keywords: Uniaxial compressive strength, Dynamic young’s module, Support vector regression, 

Principal components regression, Ultrasonic test 

 

1.Introduction 

Uniaxial compressive strength (UCS) and static Young's modulus (Es) are two 

important aspects of the behaviors observed in intact rocks, playing a crucial role in 

classification systems of rock bodies and their failure, design stages of engineering 

projects, and determination of failure behaviors found during drilling operations, tunnel 

construction, foundation design and dam construction[1-4]. Generally, the commonly 

used methods to achieve the aforementioned parameters are divided into two groups, 

namely direct methods based on the measurement (tests) of laboratory specimens and 

indirect methods based on the estimation of values through desirable empirical equations 

[2, 5]. The procedure of conducting laboratory tests, commonly used to determine the Es 

and UCS of rocks, is standardized by the American Society for Testing and Materials 

(ASTM) and the International Society for Rock Mechanics (ISRM). In the laboratory, 

high-quality core specimens are required to directly determine the UCS and Es. On the 

other hand, high-quality cores cannot always be extracted from weak, highly fractured, 

weathered, and thinly bedded rock samples [6, 7]. Furthermore, the exact implementation 

of the given tests is time-consuming, tedious and costly, requiring a large number of 

desirable specimens [3, 8]. To overcome these problems, many studies have been 

conducted to find a fast and efficient way to predict UCS and Es parameters based on 
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indirect and non-destructive methods[5]. Compared with the static methods, the 

ultrasonic approach, as a non-destructive method, makes it possible to achieve the values 

of some dynamic parameters at little expense without any changes in the internal structure 

of specimens. Quantities such as density (ρ), P-wave velocity (Vp) and shear wave 

velocity (Vs), due to two significant advantages of relative cheapness and availability, are 

among parameters serving to estimate the UCS and Es. Despite the fact that the 

acceptability, reliability, and practicality of the static parameters are more than the 

dynamic parameters, the static parameter measurement is much harder than that of the 

dynamic ones. This is because the static measurements are strongly influenced by crack, 

pore pressure and stress-strain. Therefore, finding the correct correlation between the 

static and dynamic parameters, using indirect methods, is required [1]. 

In order to achieve empirical relations and equations that yield UCS and Es values, 

researchers have lately employed simple regression techniques and multiple regression 

analyses (MRA)[9-11]. In recent years, probabilistic and soft-computing methods, 

including artificial neural networks (ANN) [9, 11-20], Bayesian methods [21-23],neural 

networks and fuzzy systems [7], fuzzy inference systems [10, 16, 24-27], adaptive neuro-

fuzzy inference systems [11, 24, 28, 29], support vector regression [12], regression 

trees[30, 31], genetic programming [2, 32, 33], neural network and genetic algorithm[6, 

34], hybrid artificial neural network and particle swarm optimization technique [35, 36], 

and hybrid neural network and imperialist competitive algorithm [27] have been adopted 

by researchers in order to estimate the UCS and Es values.  

The aim of the present study is to develop robust and practical models for estimating 

the UCS and Es of limestone. Review of the related literature showed that there were few 

studies focusing on the application of Principal Component Regression (PCR) and 

Support Vector Regression (SVR) models so as to predict rock properties. SVR method 

was only used in a similar study and PCR method was not used for estimation of UCS 

and Es. In this study, the UCS and Es of PCR and SVR models were trained and tested 

using 115 datasets extracted from the Roud Bar Lorestan Pumped Storage Power Plant 

project. Index tests, including density (ρ), porosity (n), ultrasonic P-wave velocity (Vp), 

and Poisson's ratio (ν), were used to estimate the UCS and Es 
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2.The regression analyses techniques 

2.1. Principal Component Regression (PCR) 

Principal Component Regression (PCR) is a regression analysis technique, based on 

principal component analysis (PCA). PCA is used to estimate the unknown regression 

coefficients in the model. PCR, however, considers regressing the outcome (also known 

as the dependent variable or the response) on a set of covariates (also known as 

independent variables, predictors or explanatory variables) based on a standard linear 

regression model [37, 38]. In PCR, instead of directly regressing the dependent variable 

on the explanatory variables, the principal components of the explanatory variables are 

used as regression is done. Only one subset of all principal components is typically used 

for regression. The principal components with higher variances, that is to say, the ones 

based on eigenvectors corresponding to the higher eigenvalues of the sample variance-

covariance matrix of the explanatory variables, are often selected as regresses. However, 

to predict the outcome, the principal components having low variances are also 

significant; in a number of cases, they are even more important[37]. One major use of 

PCR lies in overcoming the multicollinearity problem arising when two or more 

explanatory variables are close to collinearity. PCR can aptly deal with such cases by 

excluding some of the low-variance principal components in the regression step. In 

addition, typically, by regressing on only one subset of all principal components, PCR 

can result in the sufficient dimension reduction through substantially lowering the 

effective number of parameters characterizing the underlying model. This can particularly 

be useful in settings where high-dimensional covariates exist. Also, through appropriate 

selection of the principal components to be used for regression, PCR can lead to the 

efficient prediction of the outcome based on the assumed model [38, 39]. 

The regression equation in the matrix form is written as follows: 

eXBY                                                                                                                  (1) 

Let  T
n11n y...yY   denote the vector of observed outcomes and  T

n1pn
x...xX 


signify 

the corresponding data matrix of observed covariates where, n  and p indicate the size of 

the observed sample and the number of covariates respectively, with pn . Each of the 

n rows of X  denotes one set of observations for the p dimensional covariate and the 

respective entry of Y represents the corresponding observed outcome. Assume that 𝑌 and 
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each of the p columns of X have already been centered so that all of them have zero 

empirical means. This centering step is crucial (at least for the columns of X ) since PCR 

involves the use of PCA in X . PCA is also sensitive to the data centering [39]. 

pRB denotes the unknown parameter vector of regression coefficients and e

represents the vector of random errors. 

The primary goal is to obtain an efficient estimator


B for the parameter B , based on the 

available data. One frequently used approach for this purpose is ordinary least squares 

regression in which, assuming X is the full column rank, the unbiased estimator 

YXXXB TT

ols

1)(ˆ   of B  is achieved. PCR is another technique used for the same 

purpose of estimating B  [39]. 

 

2.2. Support Vector Regression (SVR) 

Data classification is a common task in machine learning. Support Vector Machines 

(SVM) are learning machines that to obtain good generalization on a limited number of 

learning patterns used the structural risk minimization inductive principle, first identified 

by Vladimir Vapnik and his colleagues in 1992 [40]. Suppose some given data points, 

each belonging to one of the two classes, where the goal is to decide in which class a new 

data point will place. In the case of support vector machines, a data point is viewed as a 

p-dimensional vector (a list of p numbers). Here, the goal is to find whether or not such 

points can be separated with a )1( p -dimensional hyperplane. This is called a linear 

classifier. There are many hyperplanes that can classify the data. Concerning the best 

hyperplane, one reasonable choice is the one representing the largest separation, or 

margin, between the two classes. Thus, the authors select the hyperplane whose distance 

from the nearest data point on each side is maximized. If such a hyperplane exists, it is 

known as a maximum-margin hyperplane; the linear classifier it defines is known as a 

maximum-margin classifier; or equivalently, the perceptron of the optimal stability [41, 

42]. SVM implements a learning algorithm, useful for recognizing subtle patterns in 

complex data sets. The algorithm performs discriminative classification learning, for 

example, to predict the classifications of previously unseen data. There are two main 

categories for support vector machines, i.e. support vector classification (SVC) and 

support vector regression (SVR). The model developed by SVR only depends on a subset 
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of the training data because the cost function for building the model ignores any training 

data that is close to the model prediction [43]. 

Suppose we have a set of training data where nx is a multivariate set of N observations 

with observed response values ny  [40]. To find the below linear function: 

bx)x(f '                                                                                                                    (2) 

and ensure that it is as flat as possible, f(x) with minimal norm values (   ) is found. 

This is formulated as a convex optimization problem to minimize the following equation: 

 '

2

1
)( J                                                                                                      (3) 

which is subject to all residuals having a value less than ε, or, in an equation form: 

  )bx(y: '

nnn
                                                                                         (4) 

There are a number of cases in which no such function f(x) exists to satisfy the 

mentioned constraints for all points. To deal with the possible infeasible constraints, slack 

variables n and
*

n are introduced for each point. This approach is similar to the "soft 

margin" concept in SVM classification because the slack variables allow regression errors 

to exist up to the value of n and 
*

n , while satisfying the required conditions. Including 

slack variables leads to the objective function, also known as the primal formula[39, 44]: 

)(C
2

1
)(J *

n

N

1n

n

'   


                                                                                         (5) 

Which is subject to: 

n

'

nnn
)bx(y:                                                                                            (6) 

*

nn

'

nn
y)bx(:                                                                                                (7) 

0*

n
                                                                                                                             (8) 

0
n
                                                                                                                             (9) 

The constant C is the box constraint, a positive numeric value that controls the penalty 

imposed on observations lying outside the epsilon margin ( ) and helps to prevent 

overfitting (regularization). This value determines the trade-off between the flatness of 

f(x) and the amount up to which deviations larger than ε are tolerated. The linear ε-

insensitive loss function ignores errors that are within ε distance of the observed value by 

treating them as equal to zero. The loss is measured based on the distance between the 

observed value y and the  boundary. This is formally described by the following 

equation: 
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)x(fy0

otherwise)x(fy                                                                                                    (10) 

The optimization problem previously described is computationally simpler to solve in 

its Lagrange dual formulation. The solution to the dual problem provides a lower bound 

to the solution of the primal (minimization) problem. The optimal values of the primal 

and dual problems need not be equal, and the difference is called the "duality gap." 

However, when the problem is convex and satisfies a constraint qualification condition, 

the value of the optimal solution to the primal problem is given by the solution of the dual 

problem. 

To obtain the dual formula, a Lagrangian functionshould be constructed from the 

primal function by introducing nonnegative multipliers n  and 
*

n  (Lagrange multiplier) 

for each observation nx . This leads to the dual formula, where the following equation is 

minimized[43]: 

 

    
 


N

1i

N

1j

'

ijjii xaaaa
2

1
aL      

 


N

1i

N

1i

iiii aayaa                                                   

(11) 

which is subject to the following constraints: 





N

1n

*

nn 0)(                                                                                                                  (12) 

C0: n
*

n
 

 
                                                               (13) 

C0: nn                                                                                           (14) 

where the   parameter can completely be described as a linear combination of training 

observations using the equation below: 

n

*

n

N

1n

n x)(  


                                                                                             (15) 

 

The function f(x) is then equal to[43]: 

b)xx)(()x(f '

n

N

1n

*

nn  


 
(16) 

For linear SVR, the conditions are as follows: 

0)bxy(a: '

nnnnn
 

  
                                                                           (17) 

0)bxy(a: '

nn

*

n

*

nn
                                                                                      (18) 

0)C(: nnn                                                                                           (19) 

0)C(: *

n

*

nn
 

 
                                                                                                   (20) 
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Some regression problems cannot adequately be described using a linear model. In such 

a case, the Lagrange dual formulation allows the previously described technique to be 

extended to nonlinear functions. 

Accordingly, a nonlinear SVR model is obtained by replacing the dot product 2

'

1xx  with 

a nonlinear kernel function )(),( 121 xxxG  , )( 2x , where )(x  is a transformation that 

maps x  to a high-dimensional space. Statistics and Machine Learning Toolbox provide 

the following built-in semi-definite kernel functions. 

The Gram matrix is an n-by-n matrix containing elements ),( jiij xxGg  . Each element 

ijg  is equal to the inner product of the predictors as transformed by  . However, there is 

no need to know  because the kernel function can be used to directly generate the Gram 

matrix. Using this method, the nonlinear SVR finds the optimal function f(x) in the 

transformed predictor space. 

The dual formula for nonlinear SVR replaces the inner product of the predictors ( ji xx , ) 

with the corresponding element of the Gram matrix ( ijg ). Nonlinear SVR finds the 

coefficients that minimize the equation below: 

      
 


N

1i

N

1j

jijjii x,xGaaaa
2

1
aL       

 


N

1i

N

1i

iiiii aayaa                               (21)                 

 

These conditions indicate that all observations, strictly inside the epsilon tube, have 

Lagrange multipliers 00 *  nn and  . Observations with nonzero Lagrange 

multipliers are called support vectors. The functions used to predict new values only 

depends on the support [39-42]: 

      bx,xGaaxf
N

2n

nnn 


                                                                                         (22) 

Several kernel functions are available in the literature [45]. In this study, the authors 

employed four kernel functions, i.e. linear, quadratic, cubic and gaussian functions, in the 

prediction model concerning UCS and Es. 

 

2.3.Performance Evaluation 

The performance of the developed models was evaluated by means of three criteria, 

including coefficient of determination (R2), normalized mean square error (NMSE), and 

mean absolute error (MAE). These criteria were defined as follows: 
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In the above relationships, N  is the number of samples, iP and i
M  are the predicted and 

measured output values, and P and M are the means of the predicted and measured 

outputvalues.  

 

3.Rock characteristics and testing procedures 

The samples examined in this study were the cylindrical core samples of limestone 

collected from 10 exploratory boreholes located near the powerhouse cavern of the Roud 

Bar Lorestan pumped storage power plant project (RL-PSPP), Lorestan province, Iran 

(Fig.1). The powerhouse is located in the thick light- to dark-gray limestone and dolomite 

limestone layer of Dalan formation (Fig. 2). The bedding dip of this formation is mostly 

semi-vertical (about 70 – 80 degrees toward west). The Area of this study is located in 

folded - thrust zone of Zagros. It has been under the effect of several stresses. This has 

resulted in the creation of faults, folding and joints in the rock. The objective of (RL-

PSPP) is to make use of the potential hydropower energy by utilizing pumping system of 

the national electricity network under low-load conditions and generating energy by 

means of the turbine and generator to meet the demands of peak loads in the country. 

The geotechnical studies mostly aimed to review the underground geology and determine 

the geotechnical parameters for designing the powerhouse. Table (1) presents 

specifications of exploratory boreholes. Figure 3 also depict their locations. According to 

the log of BH29 Borehole exactly drilled at the shaft location, the bedding was an 

alternation of limestone to dolomitic limestone (Dalan-dolomitic limestone) derived from 

the beginning to the elevation of about 2100 m and limestone (Dalan-limestone) obtained 

from the elevation ranging from 2100 to about 1650 m (end of the borehole). The samples 

were taken from the borehole drilled at (RL-PSPP) Site, presented in Table (1). 
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Fig 1. Map showing location of RLPS 

 

 
Fig 2. Dalan Limestone 
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Table 1. Specifications of Drilled Exploratory Boreholes 
Borehole Depth  (m) Number of rock samples 

BH-232 60 39 

BH-233 60 31 

BH-234 50 15 

BH-235 100 20 

HF-1 100 30 

HF-2 46.6 5 

D-1 61.5 20 

D-2 50 17 

D-3 50 18 

BH-29 384 103 

 

 

 
Fig. 3. Boreholes Location around Exploratory Gallery of Powerhouse Cavern Ceiling 

 

As it was mentioned, laboratory experiments were carried out to determine the 

geomechanical parameters of intact rock and rock masses around the underground 

structures (powerhouse and transformer caverns) of Roud Bar Lorestan Pumped Storage 

Power Plant project. 

The preparation of the specimens was conducted according to the proposed ISRM 

approach (2009)[46].  The ends of the specimens were cut and flattened to be accurately 

perpendicular to the sample's axis. The specimens were smoothed and polished based on 

the ISRM suggested methods, and also were inspected to be free of macroscopic 

structures like cracks and other planes of weakness. In order to prevent any noise impact 

in measurements, the preparation of samples was cautiously followed. The tests were 

carried out in the laboratory under saturation condition.115 high-quality specimens were 

eventually prepared with 54 mm to 82 mm diameters and the length-to-diameter 

proportions of between 2 and 3. 
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It is necessary to mention, Iran Water and Power Resources Development Company was 

the owner of the RL-PSPP and Mahab Ghodss Consulting engineering company was the 

project consultant and conducted the laboratory tests. 

These specimens were subjected to a non-destructive ultrasonic test, and their P-wave 

velocity was measured using a pundit tool. The estimates time and the transmitter-receiver 

distance were used to calculate the P and S waves’ velocities. The real time interval across 

the sample together with the time delay because of the electronic components, transducer 

and bonds gives the travel time. Hence, separate measurement of the time delay for P and 

S waves was first performed prior to measuring the travel time, using a standard such as 

aluminum samples with specified velocities or face-to-face methods [46]. the design of 

the transmitter aimed at generating wavelengths three times the rock's mean grain size to 

decrease the first arrivals at the receiver which were scattered and inadequately 

characterized. Wavelength indicates the division of the wave velocity within the rock 

sample by the transducer resonant frequency. Frequencies between 75 kHz and 3 MHz 

are more common to use. Evaluations were made using the PUNDIT together with two 

transducers, a transmitter, as well as a receiver with 1 MHz frequency. The ultrasonic 

device is represented in Figure 4. Application of a constant stress around 10 N/cm2 in the 

axial direction to the samples [46] aimed at improving the ratio of signal/noise. In 

addition, surface contact of the transducers and samples was improved using an ultrasonic 

couplant, significantly improving the ratio of signal/noise [46]. 

 

 
Fig. 4. Apparatuses of ultrasonic testing for determination of primary wave velocity (Vp), 

and shear wave velocity (Vs) 
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Following ultrasonic tests, the samples were tested by a uniaxial compressive strength 

test to measure their static Young’s modulus and Poisson’s coefficients (Fig. 5). Also, the 

porosity and density of the specimens were experimentally determined. The fundamental 

statistics and probability plot of the results obtained from these experiments are given in 

Table 2 and Figure 6. 

 

 

 

 

 

 

 
 

 

 

 

 
Fig.5. Examples of failure modes observed in limestone loaded in the Uniaxial 

Compression Test (Core specimens are ~82 mm in diameter) 

 

 

 

Table 2. Basic statistics of the results obtained from the tests  
VIF Std.dev. Mean Maximum Minimum Symbol Unit Parameters 

- 34.12 

 

93.83 

 

188.85 

 

23.06 

 

UCS MPa Uniaxial 

compressive strength 

- 10.51 27.93 
 

69.60 
 

6.19 
 

Es GPa Static Young’ modulus 

1.508 898.48 

 

5504.87 

 

6901.4 

 

2088.8 

 

VP m/s P-wave velocity 

1.104 0.028 
 

2.70 
 

2.78 
 

2.60 
 

 
kg/m3 Density 

1.364 0.0274 
 

0.23 
 

0.30 
 

0.18 
 

 
- Poisson’s ratio 

1.288 1.09 

 

1.14 

 

4.98 

 

0.17 

 

n % Porosity 
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Fig. 6. Probably plots of the results obtained from the tests 

 

4.Model implementation and results 
 

As it is clearly demonstrated in Table 2 and figure 6, these parameters have non-normal 

distributions; therefore, these distributions should be transformed were normalized for 

PCR and SVR. The correlation between rock parameters and output data were calculated 

(Table 3). The results demonstrated that correlations between input and output parameters 

are statistically significant through hypothesis testing. 
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Table 3. Correlation between rock parameters and output data (values in bold are 

different from 0 with a significance level alpha=0.05) 
 

 ρ υ Vp n 

UCS 0.194 -0.884 0.363 -0.307 

Es 0.238 -0.832 0.324 -0.252 

 

Combinations of Vp, ρ, υ, n, were employed to estimate the UCS and Es of the limestone 

rocks by PCR and SVR models. To develop and test the models, 80% of data was 

randomly selected and assigned to the learning subset to be used for network training; the 

rest 20% was assigned to the testing subset to be reserved for performance evaluation. 

Different researchers have used different proportions of data for testing and training in 

their studies. For the test dataset it can varies between 20 and 25% of data and the 

remaining for training [48, 49, 50]. The performance of the PCR and SVR models was 

evaluated by (R2), (NMSE), and (MAE). The result of PCR models for predicting UCS 

and Es are shown in Table 4. To confirm the confidence of obtained results of PCR, 

Analysis of variance is used (table 5, 6). F-test results showed that the PCR model is valid. 

 

Table 4. Summary of the PCR for predicting UCS and Es 

Model  
Train  Test  

R2 NMSE MAE R2 NMSE MAE 

PCR 
UCS 0.78 22.45 0.363 0.76 22.51 0.357 

Es 0.71 34.23 0.421 0.70 34.24 0.440 

 
Table 5. Analysis of variance for the result of PCR model for predicting UCS 

Source DF Sum of squares Mean squares F Pr> F 

Model 4 79.160 19.790 81.259 < 0.0001 

Error 90 21.919 0.244   

Corrected 

Total 
94 101.079    

Computed against model Y=Mean(Y) 

 

Table 6. Analysis of variance for the result of PCR model for predicting Es 

Source DF Sum of squares Mean squares F Pr> F 

Model 4 66.104 16.526 53.266 < 0.0001 

Error 90 27.923 0.310   

Corrected Total 94 94.027    

Computed against model Y=Mean(Y) 
 

The optimal values of SVR model parameters were determined by using Particle 

Swarm Optimization (PSO) method [51, 52]. PSO provide the excellent performance and 

effective in finding the most optimal solutions. The PSO is a bioinspired stochastic 
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optimization technique developed simulating social behavior of animals, as was the mass 

movement of birds. In fact, the PSO algorithm consists of a certain number of particles 

that randomly take the initial value. A particles considered as a bird in a swarm consisting 

of a number of birds, and all particles fly through the searching space by following the 

current optimum particle to find the final optimum solution of the optimization problem. 

Optimal values of C (box constraint mode) and ε (epsilon mode) were determined by PSO 

for individual kernel functions. The best performance of PSO-SVR model for predicting 

UCS and ES for training and testing data with respect to individual kernel functions are 

shown in Table 7.  

 

 

Table 7. Summary of the PSO-SVR for predicting UCS and Es 

Model 
Kernel 

function 
 ε C 

Train  Test  

R2 NMSE MAE R2 NMSE MAE 

SVR 

Linear 
UCS 0.279 1 0.78 22.56 0.342 0.77 18.83 0.278 

Es 0.593 100 0.70 34.33 0.470 0.66 29.31 0.460 

Quadratic UCS 0.356 1 0.83 16.98 0.329 0.76 22.15 0.296 

 Es 0.85 1 0.73 29.11 0.450 0.70 25.67 0.372 

Cubic UCS 1.108 1 0.66 43.30 0.572 0.75 23.74 0.272 

 Es 0.517 1 0.80 20.12 0.379 0.77 23.37 0.376 

Gaussian UCS 0.445 1 0.89 13.65 0.187 0.68 38.4 0.330 

 Es 0.439 30 0.88 13.63 0.337 0.53 47.95 0.534 

 

 

 

According to Tables 4 and 7, the PCR and PSO-SVR models showed reasonable accuracy 

in estimating the UCS and Es of limestone. Quadratic-SVR, however, did the best in 

estimating the UCS and cubic did the best in estimating the Es. Also, the calculated 

Statistical indexes for the training and testing subsets were very much close to one 

another, indicating the appropriacy of the modeling process and the resulting models. In 

particular, with the help of quadratic kernel functions, PSO-SVR model could perform 

the best in training and testing the data for the UCS. The training data set showed R2, 

NMSE, and MAE values equal to 0.83, 16.98, and 0.329 for prediction of UCS, 

respectively. Corresponding values for testing data were 0.76, 22.15 and 0.296, 

respectively. Also, cubic kernel functions to predict Es: R2, NMSE, and MAE values 

revealed 0.80, 20.12 and 0.379 for training data set. Corresponding values for testing data 

were 0.77, 23.37 and 0.376, respectively. In Table 8 some of the former works in which 
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different prediction techniques are used have been presented. It can be inferred that our 

results are comparable with some of results in this table. The results obtained from PCR 

and PSO-SVR model were plotted against the actual measurement in Figures 7 – 16. All 

the points, including those pertaining to the trained and tested cases, were almost located 

within the angle bisector. 

 
Table 8. Comparison some of the former works in which different prediction techniques 

reported in the literature 

References Technique Input Output R2 

Gokceoglu[23] FIS PC UCS 0.92 

Gokceoglu and 

Zorlu[9] 
FIS Vp, BPI, PLS, TS UCS, Es 0.67 for UCS, 0.79 for E 

Sonmez et al. [16] ANN UCS, UW Es 0.67 

Karakus and 

Tutmez[25] 
FIS PLS, SH, Vp UCS 0.97 

Zorlu et al. [18] ANN PD, C, Q UCS 0.67 

Yilmaz and 

Yuksek[10] 
ANFIS SH, PLS, WC, Vp UCS, Es 0.94 for UCS, 0.96 for E 

Gokceoglu et al. 

[24] 
FIS CC, SD UCS 0.88 

Canakci et al. [32] GP Vp, WA, q UCS 0.88 

Dehghan et al.[11] ANN n, SH, PLS, Vp UCS, Es 0.86 for UCS, 0.77 for E 

Cevik et al. [13] ANN SD, CC UCS 0.97 

Yagiz et al. [17] ANN 
UW, SH, n, Vp, 

SD 
UCS, Es 0.50 for UCS, 0.71 for E 

Singh et al. [15] ANFIS PLS, q, WA Es 0.66 

Mishra and 

Basu[26] 
FIS BPI, PLS, SH, Vp UCS 0.98 

Beiki et al. [31] GP q, n, Vp UCS, Es 0.83 for UCS, 0.67 for E 

Ceryan[12] SVR n, PDI UCS 0.77 

Momeni et al.) 

[33] 
PSO–ANN q, Vp, PLS, SH UCS 0.97 

TonnizamMohama

d et al. [34] 
PSO–ANN PLS, TS, q, Vp UCS 0.97 

Ghasemi et al .[2] M5P 
UW, SH, n, Vp, 

SD 
UCS, Es 

0.89 for UCS (unpruned), 0.84 for Es 

(unpruned); 

0.80 for UCS (pruned), 0.87 for Es 

(pruned) 

JahedArmaghani et 

al. [3] 
ICA–ANN SH, PLS, Vp UCS 0.94 

This study 
PCR, PSO-

SVR 
Vp, ρ, υ, n, UCS, Es 

0.78 for UCS, 0.71 for Es (PCR). 0.83for 

UCS (quadratic-SVR), 0.80 for Es 

(cubic-SVR) 

Equotip hardness (EH),quartz content (q), grain size (GS), rock type (RT),petrographic composition (PC), block punch 

index (BPI), point load strength (PLS),tensile strength (TS), unit weight (UW), schmidt hardness (SH),packing density 

(PD), concave–convex (C), water content (WC), clay content (CC), slake durability index (SD), water absorption (WA), 

P-durability index (PDI), artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro-fuzzy inference 

system (ANFIS), genetic programming (GP), imperialist competitive algorithm (ICA) 
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Fig.7. Predicted UCS by the PCR model versus the measured data: (a) Training dataset, 

(b) Testing dataset 
 

 

 
 
Fig.8. Predicted Es by the PCR model versus the measured data: (a) Training dataset, (b) 

Testing dataset 

 

 
 

Fig.9. Predicted UCS by the PSO-SVR model versus the measured data (linear function): 

(a) Training dataset, (b) Testing dataset 
 

a b 

 

a b 

b a 

= 0.782R = 0.762R 

= 0.712R = 0.702R 

= 0.782R = 0.772R 
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Fig.10. Predicted UCS by the PSO-SVR model versus the measured data (quadratic 

function): (a) Training dataset, (b) Testing dataset 
 

 
 

Fig.11. Predicted UCS by the PSO-SVR model versus the measured data (cubic 

function): (a) Training dataset, (b) Testing dataset 

 

 
Fig.12. Predicted UCS by the PSO-SVR model versus the measured data (Gaussian 

function): (a) Training dataset, (b) Testing dataset 
 

a b 

a 
b 

a b 

= 0.832R = 0.762R 

= 0.662R = 0.752R 

= 0.892R = 0.682R 
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Fig.13. Predicted Es by the PSO-SVR model versus the measured data (linear function): 

(a) Training dataset, (b) Testing dataset 

 

 
Fig.14. Predicted Es by the PSO-SVR model versus the measured data (quadratic 

function): (a) Training dataset, (b) Testing dataset 

 
Fig.15. Predicted Es by the PSO-SVR model versus the measured data (cubic function): 

(a) Training dataset, (b) Testing dataset 

 

a b 

b a 

a b 

= 0.702R = 0.662R 

= 0.732R = 0.702R 

= 0.802R = 0.772R 
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Fig.16. Predicted Es by the PSO-SVR model versus the measured data (Gaussian 

function):  (a) Training dataset, (b) Testing dataset 

 

 

Figures 7 and 8 show the results of the values predicted in the PCR method for UCS 

and elastic modulus, respectively. It is clearly obvious that these estimated values by PCR 

for UCS show less dispersion and fall closer to 45 degree line. However, PCR method is 

less accurate than UCS in estimating the elastic modulus while greater dispersion is 

observed. Also, the predicted values for UCS parameters which had been optimized by 

SVR method and obtained by PSO method are shown in figures 9-11. As Figure 9 shows, 

the dispersion is high when a linear function is used and a significant difference is 

observed between the values obtained from the model and the actual values. In addition, 

Figure 11 indicates that the best prediction belongs to the Gaussian function. Figures 12 

to 16 also show the performance of the SVR method in estimating the elastic modulus. In 

this case, it is observed that the results from the linear function in the SVR method are 

weaker than the other cases while a considerable dispersion is seen in the results. Fig. 15 

shows that the best results are obtained when the SVR method is used along with a 

Gaussian function. It should also be noted that cubic and quadratic functions fall between 

the linear function and the Gaussian Function in terms of accuracy. 

An examination of Table 8 shows that the neural network and fuzzy systems were 

traditionally used in estimating the elastic modulus and compressive strength of rocks. 

One of the methods used in the present study is PCR that has not been used previously. 

The results of this method are comparable to the methods listed in Table 8. This study 

also made use of SVR method in combination with the PSO optimization algorithm. Here, 

the optimization algorithm is used to solve the local minima problem. 

a b 
= 0.882R = 0.532R 
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5.Conclusions 

In this study, two techniques of support vector regression (SVR) and principal 

component regression (PCR) were used to model the elasticity modulus and uniaxial 

compressive strength of limestone rocks. Parameters of compressive wave velocity, 

density, porosity, and Poisson’s ratio were used to empirically model the uniaxial strength 

and elasticity modulus. As mentioned in the introduction, various methods have been used 

to estimate target parameters using data mining methods. One of the usual methods is 

regression. One of the problems of regression method is the multicollinearity between 

input parameters, and also one of the major flaws of statistical relationships is estimating 

average values, which perhaps can lead to overestimating the low values of UCS and Es, 

and vice versa. But, the PCR method compared to other regression methods, it has the 

following advantages: Dimensionality, reduction, Avoidance of multicollinearity 

between predictors and Overfitting mitigation. Another commonly used technique is the 

neural network. The major disadvantages of neural networks are the local minima 

problem and greater computational burden. The SVR method comparison with the neural 

network does not have the local minima problems, SVR method are considered the 

nonlinear relationships between parameters, and the error rate is controlled. Comparison 

of the results of implementing two methods showed that both could estimate the desired 

parameters with acceptable accuracy. Modeling was performed using four linear, 

quadratic, cubic and gaussian functions. Based on the obtained results, the SVR method, 

with the help of quadratic kernel functions, yielded the best result for estimating UCS and 

cubic kernel function yielded the best result for estimating Es.  

Finally, it can be declared that the target parameters could easily and accurately be 

estimated by applying the two methods used in this study and these models can be used 

for other carbonate rocks with similar physical and mechanical parameters. 
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